C INTERVIEW QUESTIONS Part 5

Question: What will the preprocessor do for a program?
Answer : The C preprocessor is used to modify your program according to the preprocessor directives in your source code. A preprocessor directive is a statement (such as #define) that gives the preprocessor specific instructions on how to modify your source code. The preprocessor is invoked as the first part of your compiler program’s compilation step. It is usually hidden from the programmer because it is run automatically by the compiler.

The preprocessor reads in all of your include files and the source code you are compiling and creates a
preprocessed version of your source code. This preprocessed version has all of its macros and constant
symbols replaced by their corresponding code and value assignments. If your source code contains any
conditional preprocessor directives (such as #if), the preprocessor evaluates the condition and modifies your source code accordingly.

Question: What is a macro, and how do you use it?
Answer :A macro is a preprocessor directive that provides a mechanism for token replacement in your source code. Macros are created by using the #define statement.

Here is an example of a macro: Macros can also utilize special operators such as the stringizing operator (#) and the concatenation operator (##).The stringizing operator can be used to convert macro parameters to quoted strings, as in the following example:

#define DEBUG_VALUE(v) printf(#v “ is equal to %d.n”, v)

In your program, you can check the value of a variable by invoking the DEBUG_VALUE macro:

...
int x = 20;
DEBUG_VALUE(x);
...

The preceding code prints “x is equal to 20.” on-screen. This example shows that the stringizing operator used with macros can be a very handy debugging tool.

Question: How can I make sure that my program is the only one accessing a file?
Answer :By using the sopen() function you can open a file in shared mode and explicitly deny reading and writing permissions to any other program but yours. This task is accomplished by using the SH_DENYWR shared flag to denote that your program is going to deny any writing or reading attempts by other programs.

For example, the following snippet of code shows a file being opened in shared mode, denying
access to all other files:

/* Note that the sopen() function is not ANSI compliant... */
fileHandle = sopen(“C:DATASETUP.DAT”, O_RDWR, SH_DENYWR);

By issuing this statement, all other programs are denied access to the SETUP.DAT file. If another program were to try to open SETUP.DAT for reading or writing, it would receive an EACCES error code, denoting that

Question: How do you determine whether to use a stream function or a low-level function?
Answer : Stream functions such as fread() and fwrite() are buffered and are more efficient when reading and writing text or binary data to files. You generally gain better performance by using stream functions rather than their unbuffered low-level counterparts such as read() and write().

In multi-user environments, however, when files are typically shared and portions of files are continuously being locked, read from, written to, and unlocked, the stream functions do not perform as well as the low-level functions. This is because it is hard to buffer a shared file whose contents are constantly changing. Generally, you should always use buffered stream functions when accessing nonshared files, and you should always use the low-level functions when accessing shared files

Question: What is the difference between text and binary modes?
Answer :Streams can be classified into two types: text streams and binary streams. Text streams are interpreted, with a maximum length of 255 characters. With text streams, carriage return/line feed combinations are translated to the newline n character and vice versa. Binary streams are uninterpreted and are treated one byte at a time with no translation of characters. Typically, a text stream would be used for reading and writing standard text files, printing output to the screen or printer, or receiving input from the keyboard.

A binary text stream would typically be used for reading and writing binary files such as graphics or word processing documents, reading mouse input, or reading and writing to the modem.

Question: How can you restore a redirected standard stream?
Answer: The preceding example showed how you can redirect a standard stream from within your program. But what if later in your program you wanted to restore the standard stream to its original state? By using the standard C library functions named dup() and fdopen(), you can restore a standard stream such as stdout to its original state.

The dup() function duplicates a file handle. You can use the dup() function to save the file handle
corresponding to the stdout standard stream. The fdopen() function opens a stream that has been
duplicated with the dup() function.

Question: How can I search for data in a linked list?
Answer :Unfortunately, the only way to search a linked list is with a linear search, because the only way a linked list’s members can be accessed is sequentially. Sometimes it is quicker to take the data from a linked list and store it in a different data structure so that searches can be more efficient.

Question: How can I sort a linked list?
Answer: Both the merge sort and the radix sort are good sorting algorithms to use for linked lists.

Question: What is hashing?
Answer : To hash means to grind up, and that’s essentially what hashing is all about. The heart of a hashing algorithm is a hash function that takes your nice, neat data and grinds it into some random-looking integer.

The idea behind hashing is that some data either has no inherent ordering (such as images) or is expensive to compare (such as images). If the data has no inherent ordering, you can’t perform comparison searches.

If the data is expensive to compare, the number of comparisons used even by a binary search might be too many. So instead of looking at the data themselves, you’ll condense (hash) the data to an integer (its hash value) and keep all the data with the same hash value in the same place. This task is carried out by using the hash value as an index into an array.

To search for an item, you simply hash it and look at all the data whose hash values match that of the data you’re looking for. This technique greatly lessens the number of items you have to look at. If the parameters are set up with care and enough storage is available for the hash table, the number of comparisons needed to find an item can be made arbitrarily close to one.

One aspect that affects the efficiency of a hashing implementation is the hash function itself. It should ideally distribute data randomly throughout the entire hash table, to reduce the likelihood of collisions. Collisions occur when two different keys have the same hash value. There are two ways to resolve this problem. In “open addressing,” the collision is resolved by the choosing of another position in the hash table for the element inserted later. When the hash table is searched, if the entry is not found at its
hashed position in the table, the search continues checking until either the element is found or an empty position in the table is found

The second method of resolving a hash collision is called “chaining.” In this method, a “bucket” or linked list holds all the elements whose keys hash to the same value.

When the hash table is searched, the list must be searched linearly.


Question: What is the quickest searching method to use?
Answer :A binary search, such as bsearch() performs, is much faster than a linear search. A hashing algorithm can provide even faster searching. One particularly interesting and fast method for searching is to keep the data in a “digital trie.” A digital trie offers the prospect of being able to search for an item in essentially a constant amount of time, independent of how many items are in the data set.

A digital trie combines aspects of binary searching, radix searching, and hashing. The term “digital trie” refers to the data structure used to hold the items to be searched. It is a multilevel data structure that branches N ways at each level.

Question: What is the quickest sorting method to use?
Answer :The answer depends on what you mean by quickest. For most sorting problems, it just doesn’t matter how quick the sort is because it is done infrequently or other operations take significantly more time anyway. Even in cases in which sorting speed is of the essence, there is no one answer. It depends on not only the size and nature of the data, but also the likely order. No algorithm is best in all cases.

There are three sorting methods in this author’s “toolbox” that are all very fast and that are useful in different situations. Those methods are quick sort, merge sort, and radix sort.


The Quick Sort
The quick sort algorithm is of the “divide and conquer” type. That means it works by reducing a sorting
problem into several easier sorting problems and solving each of them. A “dividing” value is chosen from the input data, and the data is partitioned into three sets: elements that belong before the dividing value, the value itself, and elements that come after the dividing value. The partitioning is performed by exchanging elements that are in the first set but belong in the third with elements that are in the third set but belong in the first Elements that are equal to the dividing element can be put in any of the three sets—the algorithm will still work properly.


The Merge Sort
The merge sort is a “divide and conquer” sort as well. It works by considering the data to be sorted as a
sequence of already-sorted lists (in the worst case, each list is one element long). Adjacent sorted lists are merged into larger sorted lists until there is a single sorted list containing all the elements. The merge sort is good at sorting lists and other data structures that are not in arrays, and it can be used to sort things that don’t fit into memory. It also can be implemented as a stable sort.

The Radix Sort
The radix sort takes a list of integers and puts each element on a smaller list, depending on the value of its least significant byte. Then the small lists are concatenated, and the process is repeated for each more significant byte until the list is sorted. The radix sort is simpler to implement on fixed-length data such as ints.

Question :What is the easiest sorting method to use?
Answer :The answer is the standard library function qsort(). It’s the easiest sort by far for several reasons:

It is already written.
It is already debugged.
It has been optimized as much as possible (usually).
Void qsort(void *buf, size_t num, size_t size, int (*comp)(const void *ele1, const void *ele2));

Question: What is the benefit of using const for declaring constants?
Answer: The benefit of using the const keyword is that the compiler might be able to make optimizations based on the knowledge that the value of the variable will not change. In addition, the compiler will try to ensure that the values won’t be changed inadvertently.

Of course, the same benefits apply to #defined constants. The reason to use const rather than #define to define a constant is that a const variable can be of any type (such as a struct, which can’t be represented by a #defined constant). Also, because a const variable is a real variable, it has an address that can be used, if needed, and it resides in only one place in memory

Question: Can static variables be declared in a header file?
Answer: You can’t declare a static variable without defining it as well (this is because the storage class modifiers
static and extern are mutually exclusive). A static variable can be defined in a header file, but this would cause each source file that included the header file to have its own private copy of the variable, which is probably not what was intended.

Question: Is it acceptable to declare/define a variable in a C header?
Answer :A global variable that must be accessed from more than one file can and should be declared in a header file. In addition, such a variable must be defined in one source file.

Variables should not be defined in header files, because the header file can be included in multiple source files, which would cause multiple definitions of the variable. The ANSI C standard will allow multiple external definitions, provided that there is only one initialization. But because there’s really no advantage to using this feature, it’s probably best to avoid it and maintain a higher level of portability.

“Global” variables that do not have to be accessed from more than one file should be declared static and
should not appear in a header file.

Question :When should a type cast be used?
Answer : There are two situations in which to use a type cast. The first use is to change the type of an operand to an arithmetic operation so that the operation will be performed properly.

The second case is to cast pointer types to and from void * in order to interface with functions that expect or return void pointers. For example, the following line type casts the return value of the call to malloc() to be a pointer to a foo structure.

struct foo *p = (struct foo *) malloc(sizeof(struct foo));